Review of canine atopic dermatitis: a look from the skin conformation and its immune response

Authors

  • Ana Consuelo González Patiño Fundación Universitaria Juan de Castellanos
  • Rosa María Viviana Gómez Carrillo Fundación Universitaria Juan de Castellanos
  • Miguel Ángel Ardila Páez Fundación Universitaria Juan de Castellanos
  • Yohana Milena López Róbles Fundación Universitaria Juan de Castellanos

DOI:

https://doi.org/10.38017/22487735.616

Keywords:

atopy, collagen, corneal stratum, type I hypersensitivity, type IV hypersensitivity

Abstract

Dermatitis are frequent pathologies in the consultation of small animals, being a nonspecific condition that threatens the well-being of both canines and felines and affects the dynamics of the holding family of these individuals. Within the dermatitis group, the atopic has become a difficult diagnosis and treatment condition. It is known that canine atopic dermatitis (CAD) is multifactorial and depends on the genetic predisposition of individuals and environmental stimuli, which may be affected by climate change. The complex immune response in canines has allowed us to understand human atopic dermatitis, becoming a medical model for research. This allergic inflammation is mediated by a type I or IV hypersensitivity response, being similar in canines and humans. Mast cells, cells with an important presence in canine skin, facilitate the recruitment of leukocytes, favour the adhesion and diapedesis of these cells, allowing the inflammatory response to be exaggerated. In the immune response cytokines, tumour necrosis factor, natural killer, among others, which facilitate communication between innate and acquired immunology, leading to the complex immune response and allowing the immune-mediated response to occur. In addition, from the individual immune response, CAD can be complicated by secondary contamination of microorganisms, which lead to their own immune responses depending on their nature. This document is intended to expose from the anatomical conformation of the skin and its immune response, the presentation of the CAD.

Author Biographies

Ana Consuelo González Patiño, Fundación Universitaria Juan de Castellanos

Médico Veterinario y Zootecnista, Universidad de los Llanos
M.Sc. en Ciencias Veterinarias, Universidad Pedagógica y Tecnológica de Colombia
Docente, Facultad de Ciencias Agrarias y Ambientales, Fundación Universitaria Juan de Castellanos, Grupo de investigación IRABI.

Rosa María Viviana Gómez Carrillo, Fundación Universitaria Juan de Castellanos

Médico Veterinario, Universidad de Ciencias Aplicadas y Ambientales
M.Sc. en Conservación y Manejo de Vida Silvestre, Universidad Nacional de Costa Rica
Docente, Facultad de Ciencias Agrarias y Ambientales. Fundación Universitaria Juan de Castellanos, Grupo de investigación IRABI.

Miguel Ángel Ardila Páez, Fundación Universitaria Juan de Castellanos

Estudiante X semestre Medicina Veterinaria, Facultad de Ciencias Agrarias y Ambientales, Fundación Universitaria Juan de Castellanos, Grupo de investigación IRABI.

Yohana Milena López Róbles, Fundación Universitaria Juan de Castellanos

Médico Veterinario, Fundación Universitaria Juan de Castellanos
M.Sc (e) en Ciencias Veterinarias, Universidad Pedagógica y Tecnológica de Colombia, Grupo de investigación GIDIMEVETZ
Docente, Facultad de Ciencias Agrarias y Ambientales, Fundación Universitaria Juan de Castellanos.

References

Ackerman, B. Schotland, E., Tamayo, M. y Martin-Reay, D. (2001). The infundibulum is epidermal, not follicular. Dermatopathology: Practice & Concept, 7, 396-398.

Akdis, C., Akdis, M., Bieber, T., Bindsley, J., Sen, C., Boguniewicz, M. y Eigenmann, P. (2016). Diagnosis and treatments of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immnulogy. Journal Allergy Clinical Immnunology, 118, 152-169

Almela Sánchez, R. M. (2014). Dermatología clínica en perros y gatos. Andalucia, España. IC editorial. (No. 636.708965076 A4D4).

Banks, W.J. (1993). Applied veterinary histology. 3 ed. Texas: Mosby Year Book. Inc.

Belkaid, Y. y Segre, J. A. (2014). Dialogue between skin microbiota and immunity. Science, 346, 954-959

Berker, M., et al C. (2017). Allergies–AT cells perspective in the era beyond the TH1/TH2 paradigm. Clinical Immunology, 174, 73-83.

Bradley, C., Morris, D. y Rankin, S. (2016). Longitudinal evaluation of the skin microbiome and association with microenviroment and treatment in canine atopic dermatitis. Journal Investigation Dermatology, 136, 1182-1190.

Broide, D. y Sriramanao, P. (1998). Inhibition of eosinophil rolling and recruitment in P-selectin-and ICAM-1-deficient mice. Blood, 91, 2847-2856

Castellanos, G., Rodríguez, G. E Iregui, C. (2005). Estructura histológica normal de la piel del perro (estado del arte). Revista de Medicina Veterinaria, 10,109-122

Castrillón, E. L., Ramos, A. P. y Padilla Desgarennes, C. (2008). The immune function of skin. Dermatología Revista Mexicana, 52(5), 211-224.

Chaudhary, S., et al. (2019). Alterations in circulating concentrations of IL-17, IL-31 and total IgE in dogs with atopic dermatitis. Veterinary dermatology, 5(30), 383-e114

Chénier, S. Y Doré, M. (1998). P-selectin expression in canine cutaneous inflammatory disease and mast cell tumors. Veternarian pathology, 35, 85-93

Chermprapai, S. (2019). The Immune-pathogenesis of Canine Atopic Dermatitis: Skin barrier, Microbiome and Inflammation (Doctoral dissertation, Utrecht University).

Christofidou-Solomidou, M., Murphy, J. y Albelda, S. (1996). Induction of E-selectin dependent leukocyte recruitment by mast cell degranulation in human skin grafts transplanted on SCID mice. American Journal Pathology, 148, 177-188

Dellmann, D. (1993). Histología veterinaria. 2º ed. Zaragoza: Acribia.

De Mora, F., García, G., Puigdemont, A., Arboix, M., y Ferrer, L. (1996). Skin mast cell releasability in dogs with atopic dermatitis. Inflammation research, 45(8), 424-427.

De Vinney, R. y Gold, W. (1990). Establishment of two dog mastocytoma cell lines in continuous culture. American Journal Respir Cell Molecular Biology, 3, 413-420

Di Cesare, A., Di Meglio, P. y Nestle, F. (2008). A role for Th17 cells in the immunopathogenesis of atopic dermatitis? Journal of investigative Dermatology, 128(11), 2569-2571

Ellis, C., Luger, T., Abeck, D., Allen, R., Graham, R., y De Prost, Y. (2003). International consensus conference on atopic dermatitis II (ICCAD II): clinical update and current treatment strategies. Br. Journal dermatology, 148, 3-10

Emery, D. L., Djokic, T. D., Graf, P. D. y Nadel, J. A. (1989). Prostaglandin D2 causes accumulation of eosinophils in the lumen of the dog trachea. Journal of Applied Physiology, 67(3), 959-962.

Flohr, C., Johansson, Sgo., Wahlgren, C. F. y Williams, H. (2015). How atopic is atopic dermatitis? J Allergy Clin Immunology, 114,150–158.

Fogel, F. y Manzuc, P. (2009). Dermatología canina para la práctica clínica diaria. Buenos Aires, Argentina. Intermedica

Foster, A. y Foil, C. (2012). Manual de dermatología de pequeños animales y exóticos. Segunda edición. España. Lexus.

Ganz, T. (2003). Ther role of antimicrobial peptides in innate immunity. Integral Component Biology, 43, 300-304

Hammerberg, B., Olivry, T. y Orton, S. (2001). Skin mast cell histamine release following stem cell factor and high-affinity immunoglobulin E receptor cross-linking in dogs with atopic dermatitis. Veterinary Dermatology, 12, 339-346

Hanifin, J., Cooper, K. Ho, V., Kang, S., Krafchik, B. y Margolis, D. (2004). Guidelines of care for atopic dermatitis. Journal American Academic Dermatology, 50, 391-404

Hogaboam, C., et al. W. (1998). Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. The Journal of Immunology, 160(12), 6166-6171.

Jung, K., Linse, F., Pals, S. T., Heler, R., Moths, C., y Neumann, C. (1997). Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite. Contact dermatitis, 37(4), 163-172.

Junghans, V., Gutgesell, C., Jung, T. y Neumann, C. (1998). Epidermal cytokines IL-1β, TNF-α, and IL-12 in patients with atopic dermatitis: response to application of house dust mite antigens. Journal of investigative dermatology, 111(6), 1184-1188.

Lenormand, C. y Lipsker, D. (2018). Mosaicismo. EMC- Dermatología, 52(2): 1-11

Lloyd, D. y Patel, A. (2008). Estructura y funciones de la piel. En: Manual de dermatología en pequeños animales y exóticos. Foster, A., Foil, P., Alhaidari, Z., Bensignor, E., Burrows, M., Byrne, K. y Ferguson, A. (eds.). 2º edición. Barcelona, España.

Maeda, S., et al, (2002). Expression of CC chemokine receptor 4 (CCR4) mRNA in canine atopic skin lesion. Veterinary immunology and immunopathology, 90(3-4), 145-154

Marsella, R. (2013). Fixing the skin barrier: past, present and future--man and dog compared. Vet. Dermatol, 24, 73- 6.e17-8

Matsuoka, T., et al. (2000). Prostaglandin D2 as a mediator of allergic asthma. Science, 287(5460), 2013-2017.

Miller, W., Griffin, C., y Campbell, K. (2014). Dermatología: en pequeños animales. 7º ed. Volumen 1. Buenos Aires, Argentina: Intermedica.

Monteiro, N., Stinson, A. y Calhoun, L. (1993). Integumento. En: Histología veterinaria. Delmann, D. (ed.) 2º edición. Zaragoza: Acribia, 323-352

Nahm, D., Lee, E., Park, H., Kim, H., Choi, G. y Jeon, S. (2008). Treatment of atopic dermatitis whit a combination of allergen-specific immunotherapy and a histamine-immunoglobulin complex. International Archives of Allergy and Immunology, 146(3), 235-240

Nakatani, T.,et al. (2001). CCR4+ memory CD4+ T lymphocytes are increased in peripheral blood and lesional skin from patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 107(2), 353-358.

Nesbitt, G. y Ackerman, L. (2001). Dermatología canina y felina: diagnóstico y tratamiento. Buenos Aires: Intermédica.

Novak, N. y Leung, D. Y. (2010). Pediatric Allergy: Principles and Practice (Eds Leung, D.Y. & Sampson, H.) W.B. Saunders, Edinburgh, 552-563

Nuttall, T. J., Knight, P. A., Mcaleese, S. M., Lamb, J. R. y Hill, P. B. (2002). Expression of Th1, Th2 and immunosuppressive cytokine gene transcripts in canine atopic dermatitis. Clinical & Experimental Allergy, 32(5), 789-795.

Nuttall, T., Marsella, R., Rosenbaum, M., Gonzales, A. y Fadok, V. (2019). Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. JAVMA, 254(11), 1291-1300.

Olivry, T. (2012). What can dogs bring to atopic dermatitis research. En Ring, J., Darsow, U., Behrendt, H. (Eds.). New trends in allergy and atopic eczema. Chem Immnulogy Allergy.

Olivry, T., Naydan, D. y Moore, P. (1997). Characterization of the cutaneous inflammatory infiltrate in canine atopic dermatitis. American Journal Dermatopathology, 19, 477-486

Ortega-Velazquez, R., et al. (2004). Collagen I upregulate extracellular matrix gene expression and secretion of TGF-β1 by cultured human mesangial cells. American Journal of Physiology-Cell Physiology, 286(6), C1335-C1343.

Oyoshi, M. K., He, R., Kumar, L., Yoon, J. y Geha, R. S. (2009). Cellular and molecular mechanisms in atopic dermatitis. Adv. Immunology, 102, 135-226

Paterson, S. (2009). Manual de enfermedades de la piel en perros y gatos. Segunda edición. Buenos Aires. Argentina: Intermedica.

Pierezan, F., Olivry, T. y Paps, J. (2016). The skin microbiome in allergen-induced canine atopic dermatitis. Veterinary Dermatology, 27, 332-339

Roque, J., O´Leary, C. y Kyaw-Tanner, M. (2011). PTPN22 polymorphisms may indicate a role for this gene in atopic dermatitis in West Highland White Terriers. BCM Res Notes, 4, 571-577

Santoro, D., Marsella, R. y Pucheu-Haston, C. (2015). Review: pathogenesis of canine atopic dermatitis: skin barrier and host-microorganism interaction. Veterinary Dermatology, 26, 84-94

Scott, D., Miller, W. y Griffin, C. (2001). Small animal dermatology. Saunders 6º ed. Philadelphia.

Silvestri, M., Spallarossa, D., Battistini, E., Sabatini, F., Pecora, S., Parmiani, S. y Rossi, G. (2002). Changes in inflammatory and clinical parameters and in bronchial hyperreactivity asthmatic children sensitized to house dust mites following sublingual immunotherapy. Journal of investigational allergology & clinical immunology, 12(1), 52-59.

Simou, C., Thoday, K. y Forsythe, P. (2005). Adherence of Staphylococcus intemedious to corneocytes of healthy and atopic dogs: effect of pyoderma, pruritus score, treatment and gender. Veterinary Dermatology, 16, 385- 391

Sinke, J., Thepen, T., Bihari, I., Rutten, V. y Willemse, T. (1997). Immunophenotyping of skin-infiltrating T-cell subsets in dogs with atopic dermatitis. Veterinary immunology and immunopathology, 57(1-2), 13-23

Springer, T. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76, 301-314

Teran, L. 2000. CCL chemokines and ashtma. Immunology Today, 21, 235-241

Torres, R. (2003). Expresión de moléculas proinflamatorias en modelos caninos de inflamación alérgica in vivo e in vitro. Tesis doctoral. Universitat Autónoma de Barcelona. 108pp

Toru, H., Ra, C., Yata, J. y Nakanata, T. (1998). Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. Journal Allergy Clinical Immunology, 102, 491-502

Tupker, R. A., De Monchy, J. G., Coenraads, P. J., Homanb, A., y Van Der Meer, J. B. (1996). Induction of atopic dermatitis by inhalation of house dust mite. Journal of allergy and clinical immunology, 97(5), 1064-1070.

Virga, V. (2003). Behavioral dermatology. The Veterinary clinics of North America. Small animal practice, 33(2), 231-51.

Wardlaw, A. J. (2001). Eosinophil trafficking in asthma. Clinical Medicine, 1(3), 214-218

Weese, J. (2013). The canine and feline skin micribiome in health and disease. Veterinary Dermatology, 24, 137-145

Wershil, B. K., Wang, Z. S., Gordon, J. R. y Galli, S. J. (1991). Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha. The Journal of clinical investigation, 87(2), 446-453.

Wilhem, S., Kovalik, M. y Favrot, C. (2011). Breed-associated phenotypes in canine atopic dermatitis. Vet Dermatol, 22, 143-149

Woltman, G., Mcnulty, C. y Dewson, G. (2000). IL-3 induces PSGL-1/P-selectine-dependent adhesion of eosinophils, but no neutrophils, to HUVEC under flow. Blood, 95, 3146-3152

Wood, S., Ke, X., Nuttall, T. (2009). Genome-wide association analysis of canine atopic dermatitis and identification of disease related snps. Immunogenetics, 61, 765-772

Yager, J. y Scott, D. (1993). The skin and appendages. En: Pathology of domestic animals. Jubb, K., Kennedy, P. y Palmer, N. (Eds.). Academic Press 4ª ed., San Diego.

Yano, K., Yamaguchi, M., Lantz, C, Butterfield, J., Costa, J. y Galli, S. J. (1997). Production of macrophage inflammatory protein-1alpha by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast cell IgE-binding ability. Laboratory investigation; a journal of technical methods and pathology, 77(2), 185-193.

Zimmerman, G., Mcintyre, T., Mehra, M. y Prescott, S. (1990). Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. The Journal of Cell Biology, 110(2), 529-540.

How to Cite

Patiño, A. C. G., Gómez Carrillo, R. M. V., Ardila Páez, M. Ángel, & López Róbles, Y. M. (2018). Review of canine atopic dermatitis: a look from the skin conformation and its immune response. Conexión Agropecuaria JDC, 8(1), 51–70. https://doi.org/10.38017/22487735.616

Downloads

Download data is not yet available.

Published

2018-05-28

Issue

Section

Ciencias Veterinarias