PRODUCCIÓN Y BIOSÍNTESIS DE FIBRAS VEGETALES. UNA REVISIÓN

Autores/as

  • Yuli Alexandra DEAQUIZ-OYOLA
  • Brigitte Liliana MORENO MEDINA

Palabras clave:

celulosa, pared celular, microfibrillas, celulosa sintasa, hemicelulosa.

Resumen

Las fibras vegetales son estructuras celulares conformadas por diferentes polímeros de celulosa, hemicelulosa, pectina y lignina, importantes a nivel mundial en el proceso textil, alimentario e industrial. Esta revisión recopila extensos estudios que se han realizado en torno al desarrollo de las fibras, clasificación, tipos, y, en especial, de características estructurales y morfológicas de la celulosa, tales como la conformación de la cadena, la polaridad, la asociación, la cristalidad y, de igual manera, la estructura y organización de las microfibrillas dentro de su estructura celular, las cuales dan a conocer la importancia y relevancia que tienen las fibras como productos o subproductos de las plantas en el desarrollo diario de las actividades que hace el hombre; además, se aborda la producción de algunos cultivos de fibras como el algodón (Gossypium hirsutum L.), el lino (Linum usitatissimum L.), el kenaf (Hibiscus cannabinus L.) y el fique (Furcraea spp). De tal manera, que el objetivo de este trabajo fue realizar una recopilación sobre las fibras vegetales y su producción, biosíntesis y estructura, partiendo de la celulosa.

Referencias bibliográficas

ALEKSANDRA, B., B.G. GORDANA, A. GROZDANOV, M. AVELLA, G. GENTILE & ERRICO, M. 2007. Crystallization behavior of poly (hydroxybytyrate-covalerate) in model and bulk PHBV/kenaf fiber composites. J. Mater. Sci. 42 (16): 6501-6509.

BAKER, T.A. & BELL, S.P. 1998. Polymerases and the replisome: machines within machines. Cell 92 (3): 295-305.

BAR-PELED, M. & O’NEILL, M. 2011. Plant Nucleotide Sugar Formation, Interconversion and Salvage by Sugar, Recycling. Annual Review of Plant Biology 62: 127-155.

BIRNIN-YAURI, A., IBRAHIM, N., ZAINUDDIN, N., ABDAN, K., THEN, Y. & CHIENG, B. 2016. Influence of Kenaf core fiber incorporation on the mechanical performance and dimensional stability of oil palm fiber reinforced poly(lactic acid) hybrid biocomposites. BioResources 11 (2):3332-3355.

BRETT, C.T. 2000. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int. Rev. Cytol. 199: 161-199.

BROWN, R.M. 1996. The biosynthesis of cellulose. J. Macromol. Sci. A 33: 1345-1373.

BROWN, R.M. 2004. Cellulose structure and biosynthesis: what is in store for the 21st century?. Journal of Polymer Science. Part A. Polymer Chemistry 42: 487-495.

CHAND, N. & HASHMI, S.A.R. 1993. Metals Materials and Processes 5: 51.

CHARLET, K., BALEY, C., MORVAN, C., JERNOT, J., GOMINA, M. & BREARD, J. 2007. Characteristics of Herme’s flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Composites Part A: Applied Science and Manufacturing 38: 1912-1921.

CRATTY, C. 2016. The artistic possibilities of cellulosic fibers. BioResources 11 (2): 2968-2971.

FARUK, O., BLEDZKI, A.K., FINK, H. & SAIN, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37: 1552-1596.

FOSTER, A.S. & GIFFORD, E.M. 1959. Comparative Morphology of Vascular Plants. ED., W.H. Freeman and Company. San Francisco and London. 555pp.

GAÑÁN, P. & MONDRAGÓN, I. 2002. Surface modification of fique fibers: effects on their physico- mechanical properties. Polymer Composites 23 (3): 385.

GLASSER, W.G., KAAR, W.E., JAIN, R.K. & SEALEY, J.E. 2000. Separation, characterization and dydrogel-formation of hemicellulose from aspen wood. Carbohydr. Polym. 43: 367-374.

GRAVES, D.A. & STEWART, J.M. 1988. Chronology of the differentiation of cotton (Gossypium hirsutum L) fiber cells. Planta 175: 254-258.

HAIGLER, CH. & BROWN, R.M. 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111-120.

HEINZE, T. & LIEBERT, T. 2012. Celluloses and Polyoses/Hemicelluloses. Polymer Science: A comprehensive reference 10: 83-152.

HOLLAND, N., HOLLAND, D., HELENTJARIS, T., DHUGGA, K., XOCONOSTLE- CAZARES, B. & DELMER D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiology 123: 1313-1323.

HOLTZAPPLE, M. 2003. Cellulose. Encyclopedia of Food Sciences and Nutrition (Second Edition). 998-1007pp.

HOVAV, R., HOVAV, E., RAPP, R., FLAGEL, L. & WENDEL, J.F. 2008. A majority of cotton genes are expressed in single-celled fiber. Planta 227: 319-329.

JARVIS, M. 2003. Cellulose stacks up. Nature 426: 611-612.

JINSHU, S., SHELDON, Q.S., MICHAEL, B., MARK, H. & JINWU, W. 2011. Kenaf Bast fibers part I: hermetical alkali digestion. Int. J. Polym. Sci. 2011: 8p.

JOHN, M. J. & THOMAS, S. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71: 343-364.

JOHN, P. 1992. Biosynthesis of the major crop products. Cellulose.Wiley, Jhon and Sons. 70-87 pp.

KANG, L., MEILING, H., CHAOJUN, Z., LIANGYU, Y., JING, S. & TIANZHEN, Z. 2012. Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. Journal of Proteomics 75 (3): 845-856.

KESHK, S., SUWINARTI, W. & SAMESHIMA, K. 2006. Physicochemical characterization of different treatment sequences on kenafbast fiber. Carbohyd. Polym 65 (2): 202-206.

KUGA, S., TAKAGI, S. & BROWN, RM. 1993. Native folded-chain cellulose II. Polymer 34: 3293-3297.

KUMAR, R., SINGH, S., & SINGH, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology Biotechnology 35: 377-391.

GORSHKOVA, T. & MORVAN, C. 2006. Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta, an international journal of plant biology 223 (2): 149-158.

GURJANIMOV, O., IBRAGIMOVA, N.N., GNEZDILOV, O. & GORSHKOVA, T. 2008. Polysaccharides, tightly bound to cellulose in the cell wall of flax bast fibre: Isolation and identification. Carbohydrate Research 72: 719-729.

LANE, D., WIEDEMEIER A., PENG, L.,HOFTE, H., VERNHETTES, S., DESPREZ, T. 2001. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-b-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiology 126: 278-288.

LI, S., LEI, L. & GU, Y. 2013. Functional analysis of complexes with mixed primary and secondary cellulose synthases. Plant Signaling and Behavior 8 (3): 1-5.

LIN, P., LIN, L., WU, J. & LIN, N. 2004. Breeding of FuHong4, a kenaf variety with high-yielding and resistance. Plant fiber and products 26 (1): 1-4.

LOZANO-RIVAS, W. 2012. Uso del extracto de fique (furcraea sp.) como coadyuvante de coagulación en tratamiento de lixiviados. Revista Internacional de Contaminación Ambiental 28 (3): 219-227.

MAO, Z., XINGMING J., YIMING C., LINA W., MENG L. & QUAN Y. 2011. Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and

CO2 separation. Separation and Purification Technology 179-184 pp.

MENDEZ-ORTIZ, M. & MEMBRILLOHERNÁNDEZ, J. 2004. Mecanismos moleculares de la síntesis de celulosa en bacterias. Revista especializada en ciencias químico-biológicas 7 (1): 26-34.

MIKSHINA, P.V., GURJANOV, O.P., MUKHITOVA, F.K., PETROVA, A., SHASHKOV, A.S. & GORSHKOVA, T.A. 2012. Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibres. 853-861 pp.

NISHIYAMA, Y., SUGIYAMA. J, CHANZY, H. & LANGAN, P. 2003. Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society 125: 14300-14306.

OKUDA, K., SEKIDA, S., YOSHINAGA, S. & SUETOMO, Y. 2004. Cellulosesynthesizing complexes in some chromophyte algae. Cellulose 11: 365-376.

PACHECO-TORGAL, F. & JALALI, S. 2011. Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials 25 (2): 575-581.

PONTIS, H.G. 1977. Riddle of sucrose. In International Review of Biochemistry, Plant Biochemsitry II, ed.DH Northcote, Baltimore, MD: Baltimore Univ. Park Press.13: 80-117.

REDDY, N., & YANG, Y. 2005. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 4: 190-195.

REN, J.L. & SUN, R.C. 2010. Hemicelluloses. Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. 73-130 pp.

REVILLA, G. & ZARRA, I. 2000. La fisiología vegetal y su impacto social. La celula vegetal. En: AZCÓN-BIETO, J. & TALÓN, M. (eds.), Fundamentos de fisiología vegetal. McGraw-Hill, Barcelona 6-12 pp.

ROMLING, U. 2002. Molecular biology of cellulose production in bacteria. Research in Microbiology 153 (4): 205-212.

ROWELL, R.M., SCHULTZ, T.P. & NARAYAN, R. 1992. Emerging technologies for materials & chemicals for biomass, ACS Symposium Ser 476: 12.

SAHA, B. C. 2000. Alpha-l-arabinofuranosidases- biochemistry, molecular biology and application in biotechnology. Biotechnology Advances 18: 403-423.

SALNIKOV, V.V., AGEEVA M.V. & GORSHKOVA T.A. 2008. Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall. Protoplasma 233: 269-273.

SALAM, A., PAWLAK, J.J., VENDITTI, R.A. & I-TAHLAWY, K. E. 2011. Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18: 1033-1041.

SAXENA, I. & BROWN, M. 2005. Cellulose Biosynthesis: Current Views and Evolving Concepts. Annals of Botany 96: 9-21.

SCHELLER, H. & ULVSKOV, P. 2010. Hemicelluloses. Annu. Rev. Plant. Biol. 61: 263-289.

SCHWIKAL, K., HEINZE, T., SAAKE, B., PULS, J., KAYA, A. & ESKER, A.R. 2011. Properties of spruce sulfite pulp and birch kraft pulp after sorption of cationic birch xylan. Cellulose 18: 727-737.

SOMERVILLE, C. 2006. Cellulose Synthesis in higher plant. The Annual Review of Cell and Developmental Biology 22: 53-78.

SPERRY, J.S. 1982. Observations of reaction fibers in leaves of Dicotyledons. J. Arnold Arbor 63: 173-185.

STAIGER M. & TUCKER, N. 2008. Natural-fibre composites in structural applications. En: PICKERING, K. (ed.), Properties and performance of natural-fibre composites. Woodhead Publishing, Cambridge, UK 269-300 pp.

STORK, J., HARRIS, D., GRIFFITHS, J., WILLIAMS, B., BEISSON, F., LI-BEISSON, Y., MENDU, V., HAUGHN, G & DEBOLT, S. 2010. Cellulose synthase serves a nonredundant role in secondary cell wall synthesis in arabidopsis epidermal testa cells. Plant Physiology 153 (2): 580-589.

SUN, R.C., TOMKINSON, J., GENG, Z.C. & WANG N.J. 2000. Comparative studies of hemicelluloses solubilized during the treatments of mainze stems with peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. Part 1. Yield and chemical characterization. Holzforschung 54: 349-356.

SUGIYAMA, J., VUONG, R. & CHANZY, H. 1991. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24 (14): 4168-4175.

TSEKOS, I. & REISS, H.D. 1992. Occurrence of the putative microfibrilsynthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine red alga. Erythrocladia subintegra Rosenv. Protoplasma 169: 57-67.

VANDAN, J.E. & GORSHKOVA, T.A. 2003. Cell Walls and Fibers / Fiber Formation. Encyclopedia of Applied Plant Sciences. 87-96 pp.

WILKINS, T.A. & JERNSTEDT, J.A. 1999. Molecular genetics of developing cotton fibers In Cotton Fibers (Basra, AM, ed) New York: Hawthorne Press. 231-267.

WU, Y., LLEWELLYN, D.J., WHITE, R., RUGGIERO, K., & AL-GHAZI, E.S. 2007. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226: 1475-1490.

YAN, L.,YIU-WING, M. & LIN., Y. 2000. Sisal fibre and its composites: a review of recent developments. Composites Science and Technology 60 (11): 2037-2055.

ZHANG, B., YANG, Y.-W., ZHANG, Y., LIU, J.Y. 2013. A high-confidence reference dataset of differentially expressed proteins in elongating cotton fiber cells. Proteomics 13: 1159-1163.

ZHANG, B. & LIU, J.Y. 2013. Mass Spectrometric Identification of In Vivo Phosphorylation Sites of Differentially Expressed Proteins in Elongating Cotton Fiber Cells. PLoS ONE. 8 (3): e58758.

Cómo citar

DEAQUIZ-OYOLA, Y. A., & MORENO MEDINA, B. L. (2016). PRODUCCIÓN Y BIOSÍNTESIS DE FIBRAS VEGETALES. UNA REVISIÓN. Conexión Agropecuaria JDC, 6(1), 29–42. Recuperado a partir de https://revista.jdc.edu.co/index.php/conexagro/article/view/53

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2016-04-20

Número

Sección

Ciencias Agrarias