Adsorbentes y materiales utilizados para filtración y reducción de contaminantes en aguas potables


  • Ingrid Gisela Ramírez Pedraza Fundación Universitaria Juan de Castellanos
  • Efren de Jesús Muñoz Universidad Pedagógica y Tecnológica de Colombia UPTC


Palabras clave:

filtros, calidad de agua, adsorbentes naturales, adsorbentes sintéticos.


El desarrollo de métodos novedosos en la purificación para calidad de agua, es una de las ramas de la ciencia de los materiales que buscan soluciones en la actualidad, debido a la contaminación presente en los recursos hídricos naturales; el fin es buscar nuevas alternativas que permitan la adsorción de moléculas, filtración de partículas en suspensión, resinas de intercambio y nanotecnología, entre otros. El desarrollo de esta revisión pretende dar a conocer diferentes materiales utilizados, así como nuevas tecnologías aplicadas para esta rama.  A partir del estudio de los diferentes tratamientos de filtración, se quiere llegar a la purificación por medio de un costo bajo y con eficiencias de 100 %, con materiales naturales, que no requieren procesos de síntesis.

Biografía del autor/a

Ingrid Gisela Ramírez Pedraza, Fundación Universitaria Juan de Castellanos

Grupo de Investigación Ingenium Civilibus Facultad de Ingeniería Fundación Universitaria Juan de Castellanos

Efren de Jesús Muñoz, Universidad Pedagógica y Tecnológica de Colombia UPTC

Grupo Desarrollo y Aplicación de Nuevos Materiales (DANUM) Facultad de Ciencias Básicas/Escuela de Química Universidad Pedagógica y Tecnológica de Colombia-Tunja

Referencias bibliográficas

[1] Y. I. Tarasevich, “Application of natural adsorbents and adsorptionactive materials based thereon in the processes of water purification”, Studies in Surface Science and Catalysis, vol. 120, Part B, A. Dąbrowski, Ed.: Elsevier, 1999, pp. 659-722.

[2] V. G. e. Berezkin, V. P. Pakhomov and K. I. Sakodynskiĭ, Solid supports in gas chromatography: Supelco, 1980.

[3] Y. I. Tarasevich and F. Ovcharenko, “Adsorption sur des mineraux argileux,” Institut Français du Pétrole, Rueil Malmaison, 1980.

[4] R. M. Barrer, Zeolites and clay minerals as sorbents and molecular sieves: Academic Press, 1978.

[5] Y. Shavisi, S. Sharifnia, S.N. Hosseini, M.A. Khadivi, J. Ind. and Eng. Chem. 20 (2014) 278.

[6] M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, R. Safari, J. Mol. Catal. A Chem. 400 (2015)

[7] T.K. Erdem, C. Meral, M. Tokyay, T.Y. Erdogan, Cem. Concr. Comp. 29 (2007)

[8] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment”, Chemical Engineering Journal, vol. 156, pp. 11-24, 2010. doi:

[9] L.F. Grigor’eva, T.A. Makarova, E.N. Korotkova and O.G. Chigareva, Synthetic Amphibolic Asbestos, Nauka, Leningrad, 1975 (in Russian).

[10] D.V. Kalinin, N.D. Deniskina and G.G. Lokhova, Amphibolic Asbestos, Its Synthesis and Origin in Nature, Nauka, Novosibirsk, 1975 (in Russian).

[11] W.A. Deer, R.A. Howie and J. Zussman, Rock-Forming Minerals, vol. 3: Sheet Silicates, Longmans, London, 1962.

[12] Gow, N.N., Lozej, G.P., 1993. Bauxite, Geosci. Can. 20 (1), 9e16.

[13] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment”, Chemical Engineering Journal, vol. 156, pp. 11-24, 2010. doi:

[14] M. Zamzow, B. Eichbaum, K. Sandgren, and D. Shanks, “Removal of heavy metals and other cations from wastewater using zeolites”, Separation Science and Technology, vol. 25, pp. 1555-1569, 1990. doi:

[15] S. Kesraoui‐Ouki, C. R. Cheeseman and R. Perry, “Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents”, Journal of Chemical Technology and Biotechnology, vol. 59, pp. 121-126, 1994. doi:

[16] E. Erdem, N. Karapinar and R. Donat, “The removal of heavy metal cations by natural zeolites”, Journal of Colloid and Interface Science, vol. 280, pp. 309-314, 2004. doi:

[17] A. Hedström, “Ion exchange of ammonium in zeolites: A literature review”, Journal of Environmental Engineering, vol. 127, pp. 673-681, 2001. doi:


[19] M. Park and S. Komarneni, “Occlusion of KNO3 and NH4NO3 in natural zeolites”, Zeolites, vol. 18, pp. 171-175, 1997. doi:

[20] A. Salem and R. Akbari Sene, “Removal of lead from solution by combination of natural zeolite–kaolin–bentonite as a new low-cost adsorbent,” Chemical Engineering Journal, vol. 174, pp. 619-628, 2011.

[21] F. Zhang, C.-X. Qi, S. Wang, J.-h. Liu and H. Cao, “A study on preparation of cordierite gradient pores porous ceramics from rectorite”, Solid State Sciences, vol. 13, pp. 929-933, 2011. doi:

[22] S. Mopoung, N. Sriprang and J. Namahoot, “Sintered filter materials with controlled porosity for water purification prepared from mixtures with optimal ratio of zeolite, bentonite, kaolinite, and charcoal”, Applied Clay Science, vol. 88-89, pp. 123-128, 2014. doi:

[23] S. Qin, F. Ma, P. Huang, and J. Yang, “Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin”, Desalination, vol. 245, pp. 183-193, 2009. doi:

[24] S. Radi, S. Tighadouini, M. Bacquet, S. Degoutin, B. Revel, and M. Zaghrioui, “Quantitative removal of Zn(II) from aqueous solution and natural water using new silica-immobilized ketoenol–pyridine receptor”, Journal of Environmental Chemical Engineering, vol. 3, pp. 1769-1778, 2015. doi:

[25] Y. Qiao and X. Zhao, “Electrorheological effect of carbonaceous materials with hierarchical porous structures”, Colloids and Surfaces A: Physicochemical and Engi- neering Aspects, vol. 340, pp. 33-39, 2009. doi:

[26] K.-H. Choo, H. Lee, and S.-J. Choi, “Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment”, Journal of Membrane Science, vol. 267, pp. 18-26, 2005. doi:

[27] M. N. Sepehr, K. Yetilmezsoy, S. Marofi, M. Zarrabi, H. R. Ghaffari, M. Fingas, and M. Foroughi, “Synthesis of nanosheet layered double hydroxides at lower pH: Optimization of hardness and sulfate removal from drinking water samples”, Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp. 2786-2800, 2014. doi:

[28] J. N. Apell and T. H. Boyer, “Combined ion exchange treatment for removal of dissolved organic matter and hardness”, Water Research, vol. 44, pp. 2419-2430, 2010. doi:

[29] R. K. Misra, S. K. Jain and P. K. Khatri, “Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solutions”, Journal of Hazardous Materials, vol. 185, pp. 1508-1512, 2011. doi:

[30] S. S. Madaeni, A. G. Fane and G. S. Grohmann, “Virus removal from water and wastewater using membranes”, Journal of Membrane Science, vol. 102, pp. 65-75, 1995. doi:

[31] C. A. Mecha and V. L. Pillay, “Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment”, Journal of Membrane Science, vol. 458, pp. 149-156, 2014. doi:

[32] B. M. H. Watson, C.D., “Low-energy membrane nanofiltration for removal of color, organics and hardness from drinking water supplies”, Desalination, vol. 72, pp. 11-22, 1989. doi:

[33] J. G. Fernández, C. A. Almeida, M. A. Fernández-Baldo, E. Felici, J. Raba and M. I. Sanz, “Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification”, Talanta, vol. 146, pp. 237-243, 2016. doi:

[34] P. Roccaro, C. Barone, G. Mancini and F. G. A. Vagliasindi, “Removal of manganese from water supplies intended for human consumption: a case study”, Desalination, vol. 210, pp. 205-214, 2007. doi:

[35] M. Shafiquzzaman, M. S. Azam, J. Nakajima and Q. H. Bari, “Investigation of arsenic removal performance by a simple iron removal ceramic filter in rural households of Bangladesh”, Desalination, vol. 265, pp. 60-66, 2011. doi:

[36] J. J. B. Simonis, A.K., “Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 50-52, pp. 269- 276, PY - 2012. doi:

[37] J. K. Mwabi, F. E. Adeyemo, T. O. Mahlangu, B. B. Mamba, B. M. Brouckaert, C. D. Swartz, G. Offringa, L. Mpenyana-Mon- yatsi and M. N. B. Momba, “Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, pp. 1120-1128, 2011. doi:

[38] J. C. Miranda-Trevino and C. A. Coles, “Kaolinite properties, structure and influence of metal retention on pH”, Applied Clay Science, vol. 23, pp. 133-139, 2003. doi:

[39] J. Chen, A. Anandarajah and H. Inyang, “Pore fluid properties and compressibility of kaolinite”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 126, pp. 798-807, 2000. doi:

[40] D. M. El-Mekkawi and M. M. Selim, “Removal of Pb2+ from water by using Na-Y zeolites prepared from Egyptian kaolins collected from different sources”, Journal of Environmental Chemical Engineering, vol. 2, pp. 723-730, 2014. doi:

[41] N. H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec and T. H. Nguyen, “Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications”, Carbon, vol. 44, pp. 2569-2577, 2006. doi:

[42] Z. Kadirova, Y. Kameshima, A. Nakajima and K. Okada, “Preparation and sorption properties of porous materials from refuse paper and plastic fuel (RPF)”, Journal of Hazardous Materials, vol. 137, pp. 352-358, 2006. doi:

[43] S.-J. Seo, H. Jeon, J. K. Lee, G.-Y. Kim, D. Park, H. Nojima, J. Lee and S.-H. Moon, “Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications”, Water Research, vol. 44, pp. 2267-2275, 2010. doi:

[44] B. Van der Bruggen and C. Vandecasteele, “Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry”, Environmental Pollution, vol. 122, pp. 435-445, 2003. doi:

[45] W. J. Conlon and S. A. McClellan, “Membrane softening: a treatment process comes of age”, Journal of the American Water Works Association, vol. 81, pp. 47-51, 1989. doi:

[46] P. Eriksson, “Nanofiltration extends the range of membrane filtration”, Environmental Progress, vol. 7, pp. 58-62, 1988. doi:

[47] L. Tan and R. G. Sudak, “Removing color from a groundwater source”, Journal (American Water Works Association), pp. 79-87, 1992. [On line]. Disponible en

[48] F. E. Duran and G. W. Dunkelberger, “A comparison of membrane softening on three South Florida groundwaters”, Desalination, vol. 102, pp. 27-34, 1995. doi:

[49] M. Yahya, C. Cluff and C. Gerba, “Virus removal by slow sand filtration and nanofiltration”, Water Science & Technology, vol. 27, pp. 445-448, 1993. doi:

[50] B. Van der Bruggen, K. Everaert, D. Wilms and C. Vandecasteele, “Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation”, Journal of Membrane Science, vol. 193, pp. 239-248, 2001. doi:

Cómo citar

Ramírez Pedraza, I. G., & Muñoz, E. de J. (2017). Adsorbentes y materiales utilizados para filtración y reducción de contaminantes en aguas potables. Revista Ciencia, Innovación Y Tecnología, 3, 51–61.


Los datos de descargas todavía no están disponibles.






Artículo de Revisión