DOI:
https://doi.org/10.38017/2390058X.852Palabras clave:
sistemas industriales, automatización, neumática, hidráulica, eléctricaResumen
En la actualidad, dentro del ámbito de la automatización, y específicamente en el desarrollo de sistemas industriales, se han desarrollado tres tecnologías principales para la transformación de energía en movimientos o procesos requeridos: la neumática, la hidráulica y la eléctrica. Cada uno de estos sistemas posee ventajas y desventajas particulares, y su aplicación se dirige a diferentes segmentos de la industria en función de los requerimientos propios de cada uno. Estas tres tecnologías abarcan casi en su totalidad todos los procesos industriales actuales, por lo que este trabajo se centrará en dar a conocer las investigaciones vigentes en cada campo, con el fin de determinar la trayectoria que está tomando cada una de ellas y las posibles aplicaciones futuras que se pueden dar a estos desarrollos en el marco de una automatización a un sistema industrial.
Descargas
Citas
Arévalo Díaz, E. Y. y Moreno Pérez, E. H. (2016). Sistema de apantallamiento contra descargas atmosféricas en campos abiertos. https://ciencia.lasalle.edu.co/ing_electrica/145
Ashenden, P. J. (2010). The designer's guide to VHDL. Morgan Kaufmann.
Axin, M., Eriksson, B. y Krus, P. (2016). A flexible working hydraulic system for mobile machines. International Journal of Fluid Power, 17(2), 79-89. https://doi.org/https://doi.org/10.1080/14399776.2016.1141635 DOI: https://doi.org/10.1080/14399776.2016.1141635
Beresford, D. (2011). Exploiting siemens simatic s7 plcs. Black Hat USA, 16(2), 723-733.
Chung, J., Lee, S. H., Yi, B. J. y Kim, W. K. (2010). Implementation of a foldable 3-DOF master device to a glass window panel fitting task. Utomation in Construction, 19(7), 855-866. https://doi.org/s://doi.org/10.1016/j.autcon.2010.05.004 DOI: https://doi.org/10.1016/j.autcon.2010.05.004
Cummins, J. J., Nash, C. J., Thomas, S., Justice, A., Mahadevan, S., Adams, D. E. y Barth, E. J. (2017). Energy conservation in industrial pneumatics: A state model for predicting energetic savings using a novel pneumatic strain energy accumulator. Applied Energy, 198, 239-249. https://doi.org/10.1016/j.apenergy.2017.04.036 DOI: https://doi.org/10.1016/j.apenergy.2017.04.036
Deaconescu, T. (2007). Studies regarding the performance of pneumatic muscles (Vol. 8).
Ding, R., Xu, B., Zhang, J. y Cheng, M. (2017). Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system. Mechanical Systems and Signal Processing, 92, 86-106. https://doi.org/https://doi.org/10.1016/j.ymssp.2017.01.012 DOI: https://doi.org/10.1016/j.ymssp.2017.01.012
Dutto, E. A., Salomone, J. E., Onco, A. R., Lagier, S., Cova, W. J., Jazni, J. E. y Pedroni, J. P. (2016). Diseño definitivo de un actuador electromecánico de control de vector empuje para vehículos lanzadores con tobera flexible. [ponencia]. V Congreso Argentino de Ingeniería Mecánica. Santiago del Estero, República de Argentina.
Gillespie, B. J., Laubach, C. J., Moser, R. D., Mcclellan, D. M. y Mickievicz, S. K. (2012). U.S. Patent Application No. 13/329,793.
Golby, J. (2010). Advances in inductive position sensor technology. Sensor Review. doi:10.1108/02602281011022742 DOI: https://doi.org/10.1108/02602281011022742
Harris, R. A. (2010). U.S. Patent No. 7,768,761. U.S. Patent and Trademark Office.
Jogschies, L., Klaas, D., Kruppe, R., Rittinger, J., Taptimthong, P., Wienecke, A., Rissing, L. y Wurz, M. C. (2015). Recent developments of magnetoresistive sensors for industrial applications. Sensors, 15(11), 28665-28689. DOI: https://doi.org/10.3390/s151128665
Kamegawa, T., Qi, W., Suhara, H., Matsuda, E., Akiyama, T., Sakai, S. y Suzuki, Y. (2017). Development of a snake robot moving in a pipe with helical rolling motion. In JSME Conference on Robotics and Mechatronics (pp. 1-4). DOI: https://doi.org/10.1299/jsmermd.2017.1P2-Q02
Khan, H., Kitano, S., Frigerio, M., Camurri, M., Barasuol, V., Featherstone, R., Caldwell, D. y Semini, C. (2017). Development of the lightweight hydraulic quadruped robot — MiniHyQ. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 6343-6348). https://doi.org/10.1109/TePRA.2015.7219671 DOI: https://doi.org/10.1109/TePRA.2015.7219671
Kimura, T., Takamori, T., Sheh, R., Murao, Y., Igarashi, H., Hasumi, Y. y Tadokoro, S. (2019). Field Evaluation and Safety Management of ImPACT Tough Robotics Challenge. Disaster Robotics, 128, 481-506. https://doi.org/https://doi.org/10.1007/978-3-030-05321-5_10 DOI: https://doi.org/10.1007/978-3-030-05321-5_10
Kotzur, B. A., Berry, R. J., Zigan, S., García-Triñanes, P. y Bradley, M. S. A. (2018). Particle attrition mechanisms, their characterisation, and application to horizontal lean phase pneumatic conveying systems: A review. Powder Technology, 334, 76-105. https://doi.org/10.1016/j.powtec.2018.04.047 DOI: https://doi.org/10.1016/j.powtec.2018.04.047
Krishna, S., Nagarajan, T. y Rani, A. M. A. (2011). Review of current development of pneumatic artificial muscle. Journal of Applied Sciences, 11(10), 1749-1755. https://doi.org/10.3923/jas.2011.1749.1755 DOI: https://doi.org/10.3923/jas.2011.1749.1755
Mattila, J., Koivumäki, J., Caldwell, D. G. y Semini, C. (2017). A Survey on Control of Hydraulic Robotic Manipulators with Projection to Future Trends. IEEE/ASME Trans Mechatronics, 22(2), 69-80. https://doi.org/10.1109/TMECH.2017.2668604 DOI: https://doi.org/10.1109/TMECH.2017.2668604
Osafo-Yeboah, B., Jiang, S., Delpish, R., Jiang, Z. y Ntuen, C. (2013). Empirical study to investigate the range of force feedback necessary for best operator performance in a haptic controlled excavator interface. International Journal of Industrial Ergonomics, 43(3), 197-202. https://doi.org/https://doi.org/10.1016/j.ergon.2013.02.005 DOI: https://doi.org/10.1016/j.ergon.2013.02.005
Papoutsidakis, M., Chatzopoulos, A. y Tseles, D. (2018). Hydraulics and Pneumatics: A Brief Summary of their Operational Characteristics. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 5(10), 8973-8977.
Parr, A. (2011). Hydraulics and Pneumatics: A Technician’s and Engineer’s Guide (3.a ed.). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-096674-8.00006-9
Pneumatic Conveying – Tunra Bulk Solids. (s.f.). Recuperado el 28 febrero de 2020, de https://www.bulksolids.com.au/Services/Services---Items/Pneumatic-Conveying-Equipment-and-Testing-Services.aspx?tag=806
Qian, Y., Luo, Z., Liu, Z., Zhao, H., Li, C., Song, Y., ... & Wei, J. (2014). Application of rtd sensor in the real time measurement and wireless transmission. [ponencia]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (pp. 658-662). IEEE. DOI: https://doi.org/10.1109/IMCCC.2014.140
Saravanakumar, D., Mohan, B. y Muthuramalingam, T. (2017). A review on recent research trends in servo pneumatic positioning systems. Precision Engineering, 49, 481-492. https://doi.org/10.1016/j.precisioneng.2017.01.014 DOI: https://doi.org/10.1016/j.precisioneng.2017.01.014
Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y. y Caldwell, D. G. (2017). Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max. IEEE/ASME Transactions on Mechatronics, 22(2), 635-646. https://doi.org/10.1109/TMECH.2016.2616284 DOI: https://doi.org/10.1109/TMECH.2016.2616284
Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F. y Caldwell, D. G. (2011). Design of HyQ – a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831-849. https://doi.org/https://doi.org/10.1177/0959651811402275 DOI: https://doi.org/10.1177/0959651811402275
Serna, A., Ros, F. y Rico, J. C. (2010). Guía práctica de sensores. Creaciones Copyright SL.
Siemens, A. G. (2011). LOGO. Manual de producto, Núremberg, Alemania.
Stelson, K. A. (2011). Saving the world’s energy with fluid power. [ponencia] Proceedings of the 8th JFPS International Symposium on Fluid Power (pp. 25-28). Okinawa.
Suzumori, K. y Faudzi, A. A. (2018). Trends in hydraulic actuators and components in legged and tough robots: a review. Advanced Robotics, 32(9), 458-476. https://doi.org/10.1080/01691864.2018.1455606 DOI: https://doi.org/10.1080/01691864.2018.1455606
Vachoux, A., Bergé, J. M., Levia, O. y Rouillard, J. (Eds.). (2012). Analog and Mixed-Signal Hardware Description Language (Vol. 10). Springer Science & Business Media.
Veeh, M. y Oechsner, C. (2016). U.S. Patent Application No. 29/512,151.
Wendling, M. (2010). Sensores. Universidade Estadual Paulista.
Winck, R. C., Elton, M. y Book, W. J. (2015). A practical interface for coordinated position control of an excavator arm. Automation in Construction, 51, 46-58. https://doi.org/https://doi.org/10.1016/j.autcon.2014.12.012 DOI: https://doi.org/10.1016/j.autcon.2014.12.012
Xu, B. y Cheng, M. (2018). Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends. Frontiers of Mechanical Engineering, 13(2), 151-166. https://doi.org/https://doi.org/10.1007/s11465-018-0470-5 DOI: https://doi.org/10.1007/s11465-018-0470-5
Yoon, J. y Manurung, A. (2010). Development of an intuitive user interface for a hydraulic backhoe. Automation in Construction, 19(6), 779-790. https://doi.org/https://doi.org/10.1016/j.autcon.2010.04.002 DOI: https://doi.org/10.1016/j.autcon.2010.04.002
Yoshinada, H., Kurashiki, K., Kondo, D., Nagatani, K., Kiribayashi, S., Fuchida, M. y Okutomi, M. (2019). Dual-arm construction robot with remote-control function. Disaster Robotics, 128, 195-264. https://doi.org/https://doi.org/10.1007/978-3-030-05321-5_5 DOI: https://doi.org/10.1007/978-3-030-05321-5_5
Zheng, Y. y Liu, Q. (2011). Review of techniques for the mass flow rate measurement of pneumatically conveyed solids. Measurement: Journal of the International Measurement Confederation, 44(4), 589-604. https://doi.org/10.1016/j.measurement.2011.01.013 DOI: https://doi.org/10.1016/j.measurement.2011.01.013
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Ciencia, Innovación y Tecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.